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Abstract

In March 2023, unusually fast depositor withdrawals led to the failure of several US banks. In response,

the government provided an implicit temporary increase in deposit insurance by covering 100 % of the ex-

ante uninsured depositors. These events have reignited a debate on deposit insurance reform. This paper

contributes to this discussion by developing a dynamic general equilibrium model that incorporates: (a)

idiosyncratic bank failures, (b) contagion from failing banks to solvent banks and the broader economy,

and (c) state-contingent deposit insurance. I calibrate the model to US data and use it to assess several

options for deposit insurance reform. First, I show that, under fast government response, state-contingent

deposit insurance is the optimal policy. Second, if the government’s response is delayed, fixed deposit

insurance is preferred to the state-contingent policy. Third, delayed government response does not justify

full deposit insurance at all times: the optimal fixed deposit insurance policy covers around 65 % of total

deposits.
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1. Introduction

This paper studies the optimal design of deposit insurance through a dynamic general equi-

librium model that incorporates crucial features of the recent US banking turmoil. In March

2023, depositor withdrawals forced three mid-size US banks into early liquidation. Shortly

after, the US government triggered the Systemic Risk Exception (SRE) to cover 100% of the

ex-ante uninsured depositors of these failed banks. Treasury Secretary Janet Yellen claimed

that ”similar actions could be warranted if smaller institutions suffer deposit runs that pose

the risk of contagion”, signaling an implicit increase in deposit insurance coverage.1 Figure 1

provides evidence suggesting that the recent turmoil was similar to other US banking crises:

it was marked by large-scale panics, failure of a fraction of the banking sector, and some

form ex-post increase in deposit insurance coverage.

Amid these developments, the FDIC proposed a series of alternatives for deposit insurance

reform (FDIC, 2023). The first proposal consists of increasing the deposit insurance limits

beyond current levels, but to a level below full insurance. Their argument is that the current

level may be insufficient to prevent panic-driven crises, while large increases in coverage

could generate too much moral hazard. The second proposal suggests implementing full

deposit insurance at all times. The rationale for this proposal is that ex-post government

interventions might occur too late to limit contagion. Arguably, this concern is rooted on two

observations. On one hand, ex-post increases in deposit insurance coverage are potentially

slow to implement.2 On the other, recent evidence indicates that bank-runs might materialize

much faster than previously thought (see Rose, 2023; FDIC, 2023).

What is missing from this debate is a comprehensive framework to assess the desirability

1Janet Yellen clarified that these actions were aimed at containing systemic risk, rather than to bail out
a specific depositors or sectors (see Lawder, 2023).

2This delay may result from legal constraints. For instance, invoking the S.R.E. requires joint approval
by the Treasury, Federal Reserve and the FDIC. In 2008, the temporary increase in coverage was approved
by U.S. Congress, but became legally effective over one month after it was formally approved.
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Figure 1: US Banking Crises and Deposit Insurance

Notes: This figure shows the asset weighted default rate of US commercial banks (blue line, left axis) and the
evolution of deposit insurance (red line, right axis). This data is collected from the FDIC. The classification
of US banking crises is based on Baron et al. (2021), with the exception of the 2023 crises. I manually
collected that for the labels indicating ex-ante and ex-post changes in DI coverage based on reports and
articles.

of these proposals. To address this gap, I develop a model featuring: (1) idiosyncratic,

liquidity-driven bank failures; (2) dynamic contagion effects from failing banks to the real

economy; and (3) state-contingent deposit insurance. These model elements are absent from

standard two-period partial equilibrium models of systemic bank failure, such as those in

the tradition of Diamond and Dybvig (1983), but they enable a more nuanced analysis of

key aspects of deposit insurance reform debate.

I calibrate the model to the US economy, and use it as a framework to examine the rela-

tionship between deposit insurance, banking crises, and real economic activity. The primary

insight from my analysis is that the current US approach of increasing deposit insurance
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in times of distress is a double-edged sword. If the government can observe the state of

the economy in real time, and change the deposit insurance coverage contemporaneously,

state-contingent deposit insurance can prevent liquidity driven banking crises while inducing

relatively small moral hazard costs. However, in a more realistic scenario where government’s

response is delayed, the effectiveness of state-contingent deposit insurance diminishes signif-

icantly. I demonstrate that, under implementation delays, a fixed ex-ante deposit insurance

policy is more desirable than a state-contingent policy. Specifically, the optimal deposit

insurance policy covers 65 % of deposits at all times - approximately 10 percentage points

higher than the coverage level in 2023, but still well below full insurance.

To fix ideas, Section 2. presents a one-period partial equilibrium framework with frac-

tional bank default.3 The model features a continuum of intermediaries investing in illiquid

assets and facing idiosyncratic shocks. Fundamental defaults occur when banks’ asset re-

turns fall below the value of banks’ liabilities. Liquidity failures arise when depositors fear

that fire-sale liquidation of bank assets would be insufficient to cover early withdrawals. Fol-

lowing Goldstein and Pauzner (2005) and De Groot (2021), liquidity failures emerge as a

unique equilibrium from a coordination game across depositors. The government guarantees

a fraction of household deposits. I show that the rationale for the effectiveness of deposit

insurance holds despite the presence of idiosyncratic bank defaults and partial insurance. In

particular, I find that increases in partial deposit insurance coverage are welfare improving

only if they prevent liquidity-driven failures of fundamentally solvent banks; otherwise, they

are welfare neutral. Therefore, full deposit insurance is weakly optimal.

In Section 3. I incorporate this framework into an otherwise standard dynamic general

equilibrium banking model (see e.g. Bernanke et al., 1999; Gertler and Karadi, 2011; Elenev

et al., 2021). Similar to other models in the literature, deteriorating bank assets constrain the

intermediation capacity of the banking sector and feed back into total capital accumulation

3This section builds on the approach of Diamond and Dybvig (1983), Cooper and Ross (2002), Allen
et al. (2018), and Dávila and Goldstein (2023).
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and real economic activity. In my model, increases in bank asset risk induce sharp increases in

fundamental defaults (Mendicino et al., 2020), whereas deterioration in bank asset liquidity

prompts households to withdraw their deposits, leading to bank-runs (De Groot, 2021).

Banks internalize how these risks affect their future expected profits through their cost of

debt, and adjust their risk profile accordingly. Crucially, higher deposit insurance reduces

the sensitivity of deposit rates to default risk, and leads banks to take on excessive risks.

Therefore, this model element introduces social costs of high deposit insurance.

Since deposit insurance reduces liquidity default risk but increases fundamental default

risk, the costs and benefits of deposit insurance crucially depend on the likelihood and

severity of liquidity and fundamental banking crises. To quantify this trade-off accurately,

in Section 4.1 I calibrate the model to match the probability, persistence and severity of

each crises type using the classification from Baron et al. (2021). In Section 4.2, I simulate

the dynamics of banking crises based on the calibrated model. A key feature of the model

is that, even though the increases in bank defaults are relatively short-lived, they lead to a

highly persistent drop in the size of the banking sector, which subsequently feeds back into

real economic activity. Thus, the model captures the concept of dynamic contagion central

to the current debate on deposit insurance reform.

In Section 5., I assess the aforementioned FDIC proposals using the calibrated model. In

Section 5.1, I show that increasing ex-ante deposit insurance coverage effectively prevents

liquidity crises. However, it also induces banks to take on more risk, which results in more

severe fundamentally-driven crises. The optimal level of fixed ex-ante deposit insurance

covers 65 % of total deposits. This policy completely eliminates liquidity-driven crises while

incurring relatively modest moral hazard costs. This coverage level is about 10 percentage

points larger than the insured deposits share as of 2023.

Section 5.2 evaluates whether the US approach of keeping a relatively low coverage in

good times, and increasing it in bad times is desirable. I begin with the scenario where the

government can implement the state-contingent deposit insurance policy without delays. In
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particular, I allow the government to: (1) observe the aggregate state of the economy, and

(2) adjust coverage levels before households make their withdrawal decisions. Unsurpris-

ingly, state-contingent deposit insurance is as effective as the ex-ante policy at preventing

liquidity crises. However, because it limits coverage increases to specific circumstances, this

policy reduces the increase in ex-ante bank risk-taking and mitigates the increase in funda-

mentally driven defaults relative fixed ex-ante coverage increases. Therefore, assuming no

implementation frictions, my work rationalizes ex-post increases in deposit insurance that

are typically carried out by the U.S. government.

This assumption is arguably unrealistic. Section 5.3 relaxes it by assuming that the

increase in deposit insurance take effect one quarter after the economy has transitioned

from the good to the bad aggregate state.4 Consequently, there are some periods in which

bank asset liquidity deteriorates, but deposit insurance cannot prevent households from

withdrawing, resulting in liquidity-driven failures. I show that, this implementation delay

erases the benefits of state-contingent deposit insurance relative to fixed deposit insurance.

This result arises from two counter-acting forces. On one hand, ex-post increases are unable

to prevent the initial impact of liquidity crises and also induce moral hazard. On the other,

since liquidity crises are persistent, the government can effectively contain further bank

defaults and therefore mitigates the effects of the crises. It turns out that mitigation gains

are small relative to the costs of the initial impact of the crises and the moral hazard costs.

As a result, increases in fixed ex-ante coverage are more desirable than increases in state-

contingent deposit insurance.

Relate Literature. My work relates to two strands of literature. First, it relates

to a large body of work on two-period bank-run models of systemic bank failures. Some

papers focus on deposit insurance design (see e.g. Diamond and Dybvig, 1983; Cooper and

Kempf, 2016; Allen et al., 2018; Dávila and Goldstein, 2023), while others examine the

4To be clear, the model is silent about whether this implementation lag arises from legal constraints,
informational constraints or depositor withdrawals being too fast.
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efficiency properties of bank-runs (Allen and Gale, 1998), the role of bail-outs (Keister,

2016) or financial regulation more broadly (Kashyap et al., 2020). In line with Goldstein

and Pauzner (2005) and Allen et al. (2018), bank-runs in my model materialize as a unique

equilibrium outcome from a global game across depositors, rather than through sunspots.

Overall, my contribution to this literature if to study deposit insurance in a dynamic general

equilibrium of fractional bank default.

Second, my work relates to a series of papers that develop dynamic models of bank de-

fault. Gertler et al. (2020) Faria-e Castro (2021), and Rottner (2023) study system-wide

panics arising as a sunspot equilibrium, building on the seminal work of Gertler and Kiy-

otaki (2015). Other research features fractional defaults due to either fundamental reasons

(Begenau and Landvoigt, 2018; Mendicino et al., 2020; Elenev et al., 2021) or depositor

withdrawals (Bianchi, 2016; Amador and Bianchi, 2021; De Groot, 2021). My contribution

lies on focusing specifically on the design of deposit insurance.

2. Partial Equilibrium

2.1 Environment

I consider a one-period economy, populated by a continuum of households h, a continuum of

banks b, and a deposit insurance agency (DIA). Each bank operates under limited liability

and faces idiosyncratic returns ωb, drawn from a cumulative distribution F (ω). Banks invest

in capital Kb, financed through their own equity and by issuing demand deposits Db. Capital

yields an aggregate return Rk, while deposits offer a promised interest rate Rd, conditional on

rolling over. The realized return on deposits depends on banks’ default choices, households

roll-over decisions, and deposit insurance policy.

If an individual bank b does not default, a household h that chooses to roll-over its

deposits receives a return Rd < Rk. A household choosing to withdraw receives a lower
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return ϵ < Rd. To pay early-withdrawing households, the bank can fire-sale capital at

price λ < 1. Bank b defaults if it lacks sufficient resources to pay back the withdrawing or

rolling-over households.

The DIA takes over assets of each defaulting bank b and liquidates them at fire-sale price

λ. It guarantees at least a fraction κ of their deposits. If the per-depositor recovery rate,

RVb, exceeds the insurance limit κ, the DIA pays each household RVb instead. To maintain

a balanced budget, the DIA covers any deficits by levying lump-sum taxes T on households.

Each household h’s decision to roll-over its deposits with bank b is strategic: they depend

on its beliefs about the actions of the bank b, the DIA and the other households. These beliefs

are based on a noisy signal ω̂h,b = ωb + νh, where the noise term ν is uniformly distributed

as ν ∼ U(−ν̄, ν̄).

Table 1: Timing of actions

Morning Afternoon
Returns ωb and signals are realized ω̂h,b

Each h chooses to withdraw or roll-over
If b cannot pay withdrawals it defaults

Surviving b pay households or default
DIA levies taxes and makes payments
Performing banks pays profits and deposits

Each period, is split in two sub-periods: morning and afternoon. The sequence of actions

is outlined in Table 1. Two timing assumptions are worth discussing. First, I assume that

a bank anticipating an afternoon default will not default in the morning. This assumption

is essential to derive a unique panic default threshold and allows for a crucial distinction

between two types of failures: morning failures are liquidity-driven whereas afternoon failures

are fundamentally-driven. Second, I assume households have no morning consumption needs.

Although this assumption deviates from the framework of Diamond and Dybvig (1983), it

ensures households are ex-post identical, a feature that will prove useful when I introduce

the dynamic model in Section 3..
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2.2 Individual banks

Each b is ex-ante identical, and begins the period with Kb capital and Db deposits. In the

morning, the idiosyncratic return shock ωb is realized, and a proportion p of households

withdraws. The morning payments due to these withdrawing households are pϵDb, which

the bank must cover by liquidating assets at fire-sale price λ. Given realized return ωb, the

morning default threshold pm corresponds to the value p ∈ [0, 1] at which the payments of

early withdrawals equal the liquidation value of bank assets. Therefore, pm solves λωbRkKb =

pmϵRdDb, which can be re-arranged as

pm(ωb) =
λωb

ϵω̄
, (1)

where ω̄ = Rd(1−ϕ)
Rk

is the fundamental default threshold, and ϕ denotes the binding capital

requirement.5 If p < pm(ωb), the bank b sells capital to meet withdrawal demands and

moves to the afternoon. The amount of capital required to meet these payments K̃b, satisfies

λωbRkK̃b = pϵRdDb.

A bank that survives the morning moves into the afternoon with capital K̄b, given by

K̄b = Kb −
pϵRdDb

λωbRk

. (2)

In the afternoon, the bank must pay back the remaining depositors (1 − p)RdDb, using its

output ωbRkK̄b. The afternoon default threshold pa is the level of p ∈ (pm, 1] at which the

bank’s output equals the payments owed to rolling-over depositors, satisfying

ωbRkK̄b = (1− pa)RdDb. (3)

Re-arranging this expression, and substituting in (1) and (2), the afternoon threshold pa can

5In Section 3. I show that bank optimal choices are such that the capital requirement binds in equilibrium.
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be expressed as a function of pm:

pa(ωb) =
pm(ωb)ϵ− λ

ϵ− λ
(4)

2.3 Deposit Insurance Agency

Having characterized the actions of individual banks b, I can now detail the behavior of the

DIA. For each defaulting, the the DIA guarantees a minimum payment equal to the deposit

insurance limit κ. However, it may pay more if the recovery value per depositor exceeds

this limit. To meet these payment obligations, the DIA can liquidate bank assets within the

period, subject to the same fire-sale constraints as the private sector.6

Consider first the case where p ≥ pm(ωb), associated with the case where the bank

defaults in the morning. Since banks make morning payments until they exhaust their

resources, when a bank defaults in the morning, the DIA recovers no assets and must pay

the remaining depositors the insurance limit κRd.

Now, suppose that pa(ωb) ≥ p, corresponding with the case where bank b defaults in the

afternoon. In this case, the DIA recovers K̄b. The total liabilities of the bank amount to

RdDb(1− p), which must be covered by selling bank assets at fire-sale price λ. The recovery

value per depositor RVb is given by

RVb =
λωbRkK̄b

(1− p)Db

. (5)

Substituting equations (1)-(4) into (5), we can express RVb as a function of the morning

default threshold:

RVb =
1

1− p
· [ pm(ωb)− p ]. (6)

It follows that RVb is decreasing in p, for any p ∈ [pa, pm). Thus, for any bank that defaults

6In practice the FDIC disburses payments above the deposit insurance limit sequentially as it gradually
liquidates the bank’s assets. Thus, the implicit assumption here pertains to the timing of DIA payments.
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in the afternoon, the resources available to the DIA are decreasing in the proportion of

early-withdrawing households. This feature generates a strategic complementarity among

depositors, which I will discuss shortly.

Since the DIA can pay above the limit κ, the payments made by the DIA to each depositor

of a bank that defaults in the afternoon are given by Max{RVb, κRd}. Given that RVb is

decreasing in p, there is point in the range p ∈ (pm, pa), denoted pκ(ωb), where RVb = κRd.

At this point, the recovery value of the bank is exactly the same as the deposit insurance

limit. Imposing this condition and re-arranging yields the following expression for pκ(ωb)

pκ(ωb) =
pm(ωb)− κRd

1− κRd

. (7)

Below pκ(ωb) each late-withdrawing depositor receives more than the limit κ and the DIA

breaks even. Above this threshold, the DIA pays the limit κ and incurs a deficit, which is

financed by lump-sum taxes.

2.4 Households

Having characterized the default decisions of banks as a function of pb and ωb, as well as

the payments made by the DIA for defaulting banks, I am in a position to solve for the

roll-over decision of households for each bank b. This decision, in turn, determines the share

of households that withdraw for each bank.

In the morning, each household h receives a noisy signal ω̂h,b regarding the idiosyn-

cratic return of the bank ωb. Given this signal and their beliefs about other agents actions,

p̂−h(ω̂h,b), household h’s subjective pay-offs from rolling over (denoted as R) and withdraw-

ing (denoted as W) are summarized by Table 2. I make three assumptions throughout this

analysis: (a) ϵ = 1
Rd
, which implies that absent default, early-withdrawals imply forgoing

interest rate payments; (b) κ < ϵ, ensuring that for some values of ωb, it is always optimal to

withdraw; and (c) in the event of a morning default, whether a household receives payments
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from the bank depends on a random position in a queue. I will now characterize households’

optimal decisions as a function of their beliefs about others’ actions.

Table 2: Pay-offs of R and W

Roll-over (R) Withdraw (W) p̂−h(ω̂h,b) Bank b decision
Rd 1 (0, p̂a(ω̂h,b)] Survive morning and afternoon
RVb 1 (p̂a(ω̂h,b), p̂κ(ω̂h,b)) Afternoon default and RVb ≥ κRd

κRd 1 (p̂k(ω̂h,b), p̂m(ω̂h,b)] Afternoon default and RVb < κRd

κRd [1−p̂
p̂
κ+ 1

p̂
ϵ]Rd (p̂m(ω̂h,b), 1] Morning default

First, consider a scenario where household h believes the bank will survive both morning

and afternoon, corresponding to the first row of Table 2 with beliefs p−h(ω̂h,b) < pa(ω̂h,b).

In this case, choosing R yields pay-off Rd, while choosing W yields a pay-off of 1. Thus,

household h chooses to roll over (R).

Second, consider the scenario where household h believes the bank will default in the

morning, which corresponds to the condition that pm(ω̂h,b) ≤ p−h(ω̂h,b), with pay-offs de-

scribed in the fourth row of Table 2. If household h chooses R, it receives κRd with certainty.

In contrast, if h chooses W it gets ϵRd if it arrives ”early” in the queue, and κRd if it arrives

”late” in the queue. The perceived probability of arriving ”early” is given by 1
p−h(ω̂h,b)

, and

that of arriving ”late” is given by
1−p−h(ω̂h,b)

p−h(ω̂h,b)
. Therefore, it is optimal for h to withdraw.

The third row describes the case where the bank defaults in the afternoon, but the DIA

recovers less than the limit. This occurs when pk(ω̂h,b) ≤ p−h(ω̂h,b) < pm(ω̂h,b). In this

situation h gets κRd from R, and ϵRd from W . Under assumption (b) it follows that it is

optimal for the household to withdraw early.

The key to this global game arises in the scenario where the bank defaults in the afternoon

but the DIA recovers more than the deposit insurance limit. This corresponds to the case

where pa(ω̂h,b) ≤ p−h(ω̂h,b) < pk(ω̂h,b), with pay-offs outlined in the second row of Table 2.

In this case, the optimal choice of h crucially depends on p−h(ω̂h,b), which becomes evident
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once we consider sub-cases. At pa(ω̂h,b) ≤ p−h(ω̂h,b), the pay-offs are equivalent to those

of the first row, so it is optimal for h to choose R. At p(ω̂h,b) = pk(ω̂h,b) the pay-offs are

equivalent to those of row three so it is optimal to choose W .

What happens for values between pa(ω̂h,b) and pk(ω̂h,b) ? Since the pay-offs from W are

decreasing and continuous in p−h(ω̂h,b), while those of R are constant, it follows that there

must be a point in the space of p−h(ω̂h,b) such that h is indifferent between R and W . This

implies that the incentives to withdraw are strictly increasing in the share or households

choosing the same action. The game, therefore, features a strategic complementarity and

crosses the indifference line only once in within this region.

Given the payoff structure of the game described above, I derive the first result of the

paper which I present in Proposition 1 below. This proposition states that under the pre-

viously outlined assumptions, and if the noise of the signal is arbitrarily small but larger

than 0, there exists a unique liquidity default threshold ω∗. For any realization ωb < ω∗ all

households withdraw early and the bank fails in the morning. For any realization ωb ≥ ω∗

no household withdraws and the bank survives the morning.

Proposition 1. Existence and Uniquness of Panic Threshold

∃!ω∗ ∈ [0,∞) such that p = 1 if ω̂ < ω̂∗, and p = 0 if ω̂ ≥ ω̂∗ as long as:

• κ < ϵ and ν̄ → 0.

• there exists a unique ω∗ such that pm(ω
∗)Ω1 + Ω2 + Ln(pm(ω

∗))(1 + κRd) = 0

where Ω1 = ϵRd−1
ϵ−λ

− κRd

1−κRd
+κRd+Ln( λ−ϵ

1−κRd
) and Ω2 = −λ(Rd−1)

1−λ
+ (κRd)

2

1−κRd
)−Ln(1−κRd).

The full proof is relegated to Appendix A.2 and closely follows Goldstein and Pauzner

(2005), De Groot (2021), and Allen et al. (2018). I proceed in two steps.

In the first step I find an idiosyncratic return realization, denoted ω∗, such that agents

are indifferent between withdrawing and rolling over. Since agents know the bounds of the
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noise term, and their signal ω̂h,b, they can bound the set of signals other agents receive. This

allows them to form beliefs about other agents’ signals, given their own signal. Imposing

ν̄ → 0, agents know the expected actions of other agents. In particular, they know that for

any ω−h,b < ω∗ other agents withdraw, and for any ω−h,b > ω∗ all agents roll-over. I then

find ω∗ by taking expectations over pay-offs and setting them to zero.

The second step consists of showing that ω∗ is indeed a unique equilibrium. This follows

from a series of conditions on household’s pay-off outlined by De Groot (2021). The key

conditions are single-crossing, monotonicity and uniform limit dominance. Single-crossing

requires that the pay-off function crosses zero only once, which I already discussed. Mono-

tonicity requires that the pay-off function is weakly increasing in the signal for all the values

of p, which follows from the assumptions that the DIA can pay more than the limit, and the

random queue assumption. Uniform limit dominance requires that there exist value of the

signals such that each action (withdrawing and rolling-over) is optimal regardless of others’

actions. This condition holds due to the assumption that ω ∈ [0,∞). 7

2.5 Resource Constraint

The effective default threshold ω̃ is given by the maximum between the fundamental and

liquidity default thresholds:

ω̃ =Max{ω̄, ω∗}. (8)

Therefore, the total share of defaulting banks is given by the mass of banks with return

realizations below ω̃

F (ω̃) =

∫ ω̃

0

dF (ω̃), (9)

7When ω is so high that the bank will never default, it is optimal to roll-over for any p ∈ [0, 1]. When
ω is close to 0, the bank defaults in the afternoon, the DIA recovers less than the limit, and since ϵ > κ
it is always optimal to withdraw. Note that, in this framework, uniform limit dominance does not require
the assumption of a large market player present in Goldstein and Pauzner (2005), De Groot (2021) or Allen
et al. (2018)
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Taken together, equations (8)-(9) imply that when ω∗ ≥ ω̄, all the banks that fail do so

in morning, i.e. F (ω∗) = F (ω̃). Furthermore, a mass F (ω∗) − F (ω̄) of failures affect

fundamentally solvent banks. Therefore, the model captures the idea that liquidity defaults

can affect fundamentally solvent banks.

The model also incorporates the notion that liquidity failures can effect fundamentally

solvent banks, which occurs when ω∗ < ω̄. In this situation, a share of banks F (ω∗) fail in the

morning due to liquidity, whereas a share F (ω̃)−F (ω∗) fail in the afternoon for fundamental

reasons. This distinction is crucial for understanding the welfare effects of deposit insurance.

The total resources available for household consumption C correspond to the sum of

the ex-post aggregate return on on deposits Πd, the profits paid by the bank Πb, and the

taxes T paid to the DIA, and are detailed in Appendix A. The total resources available for

consumption can be compactly written as

C = RkKb − λF (ω̃)RkKb (10)

which states that consumption must equal the total return on productive capital net of the

dead-weight losses from bank default.

2.6 Results

This section presents three analytical results regarding the welfare properties of the equi-

librium and its relationship with deposit insurance policies. The proofs of these results are

provided in Appendix A.

The first result is outlined in Proposition 2 below. It states that liquidity failures are

inefficient only if the liquidity default threshold ω∗ is above the fundamental default threshold

ω̄. This result follows from the assumption that the economy’s default costs, (1−λ), remain

the same regardless of the underlying reason for banks’ default. The intuition for this

proposition is best understood when considering two sub-cases separately. When ω∗ ≤ ω̄,
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liquidity defaults only affect fundamentally solvent banks and therefore panics do not induce

any loss of resources to the economy. In contrast, when ω∗ > ω̄, liquidity failures induce

otherwise solvent banks to default, reducing the total resources available to the economy and

therefore welfare.

Proposition 2. Inefficiency

Let W ∗ and W̄ be the welfare of economies with and without coordination failure among

depositors. Then, W̄ > W ∗ if ω̄ < ω∗ and W̄ = W ∗ otherwise.

This result differs from Allen and Gale (1998), who claim that bank-runs can be efficient

as long as the gains provided by state-contingency induced by liquidity failures out-weight

the costs of defaults. In my framework such state-contingency is already provided by funda-

mental defaults and therefore liquidity failures can only induce extra default costs relative

to the economy without bank-runs. My claim that liquidity defaults can be inefficient is in

line with Diamond and Dybvig (1983), Cooper and Ross (2002), and Allen et al. (2018) but

extended here to the case of idiosyncratic bank-runs. 8

Proposition 3 below asserts that increases in deposit insurance coverage reduce the share

of banks affected by liquidity-driven defaults. The intuition is that as the share of insured

deposits κ increases, households have less incentives to withdraw early and therefore the

economy features less bank-runs. A special case of this result is that when κ = 1 liquidity

defaults cannot possibly exist (i.e. ω∗=0). Here, the result extends to the case of partial

insurance and idiosyncratic default. As a corollary to Propositions 2 and 3, it follows that

increases in deposit insurance can only be welfare improving if liquidity-driven failures affect

fundamentally solvent banks, as indicated by Corollary 3.1.

Proposition 3. Effectiveness of Deposit Insurance

If λ > 0.5 and ∃!ω̂∗ ∈ [0,∞), then ∂ω∗

∂κ
< 0.

8De Groot (2021) also considers individual bank defaults for fundamental or through bank-runs, but they
find that panics are always inefficient. The reason is that they assume that when a panic occurs, production
needs to be carried out inefficiently by bank creditors.
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Corollary 3.1. Welfare and Deposit Insurance

If λ > 0.5 and ∃!ω̂∗ ∈ [0,∞), then ∂W ∗

∂κ
> 0 if ω∗ < ω̄ and ∂W ∗

∂κ
= 0 if ω∗ ≥ ω̄

The final result of this section examines the relationship between the desirability of

deposit insurance and market liquidity. Proposition 4 claims that the minimum deposit

insurance needed to recover the social optimum is increasing in market illiquidity λ. The

intuition for this result is that as market illiquidity rises, households have stronger incentives

to withdraw early, which in turn leads to higher likelihood of liquidity driven defaults.

Proposition 4. Deposit Insurance and Market Liquidity

Let κ∗ be the minimum κ such that W̄ = W ∗, then ∂κ∗

∂λ
< 0.

To provide further intuition for Proposition 4, consider an economy with illiquidity λ1

and a level of deposit insurance κ1 such that the resulting liquidity threshold ω∗
1 equals the

fundamental threshold ω̄1. Then, a marginal reduction in market liquidity to λ2 < λ1, keep-

ing deposit insurance at κ1, leads to higher liquidity-default threshold ω∗
2 > ω∗

1. Given that

the fundamental default threshold is unaffected by market liquidity (i.e. ω̄1 = ω̄2), it follows

that ω∗
2 > ω̄2, which by Proposition 3 implies W ∗

2 < W̄2, which is inefficient. Consequently,

by Corollary 3.1, a higher deposit insurance coverage (say, κ2 > κ1) is necessary to recover

the social optimal.

3. Dynamic General Equilibrium

The previous section offered a simple benchmark to link the efficiency properties of bank-

runs to the desirability of deposit insurance. Moreover, it illustrated the role played by bank

asset liquidity in shaping this relationship. I now embed this framework into am otherwise

standard dynamic general equilibrium model. The model is a simplified version of Mendicino

et al. (2020), augmented with liquidity-driven default in the style of De Groot (2021).
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3.1 Environment

Time is infinite, and each period t is split between morning and afternoon. The economy is

populated by a an infinitely lived dynasty, a continuum of banks, a deposit insurance agency

and a representative firm.

The dynasty provides consumption insurance across its members, makes a consumption

decision, and allocates savings to bank deposits and risky capital. Agents within the dynasty

can be either workers or bankers. Workers supply labor inelastically to firms in exchange

for wages, while bankers provide equity financing to banks. Bankers directly choose risk-

profile of the banks without agency frictions.9 Each individual banker has a probability θ to

become a worker the following period in which case it transfers the profits to the dynasty.

This friction prevents bankers’ net-worth from growing excessively over time.

The problem of the banks follows the set-up in the partial equilibrium analysis (see

Section 2.). Banks invest in capital using bankers equity and demand deposits, face idiosyn-

cratic returns shocks, and operate under limited liability and a capital requirement. Similar

to the partial equilibrium analysis, banks default in the morning if the realization of the

idiosyncratic returns falls below ω∗
t and default in the afternoon if returns fall below ω̄t.

Given equity is more expensive than deposits, the capital requirement binds. Consequently,

bankers’ net-worth determines the economy’s intermediation capacity.

The behavior of the DIA is is also similar to the partial equilibrium case. When a bank

defaults, the DIA takes over the assets of failing banks, liquidates them at fire-sale prices

λt, pays maximum between the recovery value and the deposit insurance limit, and finances

operating losses through taxes. They key difference is that the level of deposit insurance κt

can change over time depending on the state of the economy.

The representative firm rents out capital, hires labor, produces the final good, and re-

munerates the owners of production inputs. There are two persistent sources of aggregate

9This is different from Gertler and Karadi (2011), where banks can hide funds from bankers.
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risk: bank asset risk shocks σ̄t and market liquidity λt. Through their effects on bank de-

faults, these shocks induce fluctuations in bank net worth, which in turn affect production

by shifting the economy’s intermediation capacity.

The timing of actions is outlined in Table 3. Two timing assumptions are crucial for the

analysis of the paper. First, households make their morning withdrawal decisions after the

realization of aggregate uncertainty. Second, the DIA announces the level of coverage κt after

the realization of aggregate risk, but before households make their withdrawal decisions.10

Together, these assumptions imply that when households make their withdrawal choices,

they know both the level of deposit insurance coverage and market prices. Consequently,

the coordination game played by households is the same as that in Section 2..

Table 3: Timing of actions

Morning Afternoon
Realization of aggregate shocks (λt and σ̄t)
The DIA announces κt
Realization of returns (ωb) and signals (ω̂h,b)
Each h chooses to withdraw or roll-over
If b cannot pay withdrawals it defaults

Surviving b pay households or default
DIA levies taxes and makes payments
Bankers and workers are remunerated
Resources are transferred to the dynasty
Dynasty makes decisions

3.2 Production

The representative firm rents out capital Kt, at rental rate rk,t, hires labor Lt at price wt,

and produces the final good Yt using a constant returns to scale technology

Yt = ZKα
t L

1−α
t (11)

10In Section 5.3, this timing assumption about deposit insurance policy will be relaxed.
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where Z is normalized to 1, and α represents the capital share in production. The firm’s

optimality conditions given by

wt = (1− α)ZKα
t L

−α
t , (12)

rk,t = αZKα−1
t L1−α

t , (13)

which require that input prices equal their marginal product.

3.3 Households

The workers are endowed with one unit of labor, Lt = 1, which they supply inelasti-

cally. Their utility function from consumption u(Ct) features constant relative risk aversion,

parametrized by γ. In the afternoon of each period t, the representative household chooses

consumption Ct, deposits Dh,t+1, and capital Kh,t+1 to maximize future expected utility

flows, discounted at rate β. The household’s resource constraint is

Ct + Tt +Dh,t+1 +Kh,t+1 +Ψ(Kh,t+1)+ ≤ wtLt +Πt +Wt. (14)

The available funds to the household the household are the transfers from workers (wtLt) and

bankers (Πt) as well as their wealth (Wt) . The uses of resources are given by consumption

(Ct), taxes (Tt) as well as savings in deposits (Dh,t+1) and capital (Kh,t+1 + Ψ(Kh,t+1)).

Household’s wealth Wt follows:

Wt = R̃d,tDh,t +Rk,tKh,t (15)
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where R̃d,t and Rk,t are the returns on deposits and capital, respectively. Following Gertler

and Karadi (2011), households incur in capital holding costs given

Ψ(Kh,t+1) = ψ
(Kh,t+1)

2

2
. (16)

Households can mitigate the drop in banks’ intermediation capacity by investing in produc-

tive capital, but doing so incurs costs, which are governed by parameter ψ.

3.4 Banks

Each bank operates over two consecutive periods, issues equity Eb,t to bankers and offers to

households deposits Db,t, promising interest rate Rd,t to those who roll over their deposits.

The banks use these resources to lend Kb,t+1 to firms. The banks’ portfolio yields returns

ωb,t+1Rk,t+1, where ωb,t+1 represents idiosyncratic bank returns. The banks’ budget constraint

is given by:

Eb,t = Kb,t −Db,t. (17)

Banks are subject to a regulatory constraint Et ≥ ϕKb,t+1, which limits the amount of

risky investment they can do to a fraction ϕ of their equity. Since equity financing is more

costly than deposits, the regulatory constraint binds (see Mendicino et al., 2020), implying

that deposits constitute a fraction 1− ϕ of risky capital investment:

Kb,t+1 = (1− ϕ)Db,t+1. (18)

I now characterize the total profits from banks as a function of bank default. First,

consider the case where households are not allowed to withdraw their deposits in the morning

(i.e. p = 0 for all ω). If no household withdraws, no bank defaults in the morning (i.e.
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ω∗
t+1 = 0), and the bank profits conditional on no withdrawals, denoted πt+1|p=0 follow:

πt+1|p=0 = max
{
ωb,t+1Rk,t+1Kb,t+1 −Rd,tDb,t+1, 0

}
, (19)

where the max operator reflects limited liability. The fundamental default threshold follows

ω̄t+1 =
Rd

t+1Db,t+1

Rk
t+1Kb,t+1

, and the expected profits of the bank are given by

Etπt+1|p=0 = Et

{∫ ∞

ω̄t+1

[
ωt+1Rk,t+1Kb,t+1 −Rd,t+1Db,t+1

]
dFt+1(ωt+1)

}
. (20)

Now consider the case where p(ωb,t+1) is determined by the coordination game in Section

2.. Proposition 1 states that there exists a unique liquidity threshold ω∗
t+1 below which the

bank fails in the morning (and p = 1) and above it the bank survives the morning (and

p = 0). A full characterization of the determination of ω∗
t+1 can be found in Appendix B.

As discussed in Section 2., when ω∗
t+1 ≤ ω̄t+1, liquidity defaults materialize on banks that

would have failed for fundamental reasons. Therefore, the pay-offs to the banker are given

by (19)-(20). However, if ω∗
t+1 > ω̄t+1, liquidity defaults affect banks that would be solvent

absent runs, and the banks expected profits Etπt+1 are given by:

Etπt+1 = Et

{
πt+1|p=0 −

∫ ω∗
t+1

ω̄t+1

[
ωt+1Rk,t+1Kb,t+1 −Rd,t+1Db,t+1

]
dFt+1(ωt+1)︸ ︷︷ ︸

losses from liquidity failures

}
, (21)

where the second term captures the expected profit losses from liquidity-driven defaults.

3.5 Bankers

Bankers are the owners of banks. After receiving the return from their investments, a share θ

of bankers become workers, while a share 1− θ of workers become bankers. This assumption

keeps the relative mass of workers and bankers fixed, preventing bankers’ net worth from
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growing excessively over time.

3.5.1 Individual Bankers

Each banker starts the period with net-worth Nb,t, chooses equity investment Eb,t, dividend

payouts divb,t, and risk-management effort eb,t to maximize the value to the dynasty. The

variance of the idiosyncratic risk borne by banks, denoted σω,t+1, is given by:

σω,t+1 = σ̄ω,t+1 − eb,t, (22)

where σ̄ω,t+1 is an exogenous time-varying component, and eb,t is the risk-management effort

chosen by the banker. The costs of managing risk are given by

g(eb,t) = (eb,t)
2Rk,t+1Kb,t+1, (23)

which is increasing an convex in effort and linear in ex-post returns on capital. The bankers’

budget constraint is

Nb,t = Eb,t + divb,t. (24)

Equity and dividends are paid upfront, but risk-management costs are contracted at the

beginning of the period, and paid at the end of the period.11 The bankers’ future net worth

is given by

Nb,t+1 =

∫ ∞

0

πt+1(ω)dFt+1(ω)Eb,t − g(eb,t), (25)

where the first term represents the total return on equity from all the banks and the second

term is the cost of risk-management effort. The problem of the banker writes:

Vb,t = max
Eb,t,divb,t,eb,t

{divb,t + EtΛh,t[(1− θ)Nb,t+1 + θVb,t+1]} (26)

11This timing assumption for risk management costs maintains the problem from Section 2., while keeping
the bankers’ problem linear in net worth.
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subject to (22)-(25). Equation (26) reflects that when making their choices at time t bankers

account for the pay-offs to the dynasty today (divb,t) as well as the the expected continuation

value EtΛh,t[(1− θ)Nb,t+1 + θVb,t+1]. This continuation value accounts for two outcomes: (1)

with probability θ, the banker exits, becomes a worker, and transfers resources Nb,t+1 to the

dynasty; and (2) with probability 1− θ the banker continues to operate and has value Vb,t+1.

Guessing that bankers choose to pay no dividends (i.e. divb,t = 0), and using the bankers’

budget constraint (24), and the leverage constraint of banks (18), the bankers’ expected

future net-worth simplifies to

EtNb,t+1 = Et

{
[H(ω̃t+1)− F (ω̃t+1)ω̄t+1 − e2b,t]ϕRk,t+1Nb,t

}
(27)

where, ω̃t+1 is the effective default threshold, H(ω̃t+1) are the expected idiosyncratic returns

on performing banks, and F (ω̃t+1) is the mass of performing banks.

The effort choice eb,t affects future bank net-worth through three channels. First, there is

a direct cost of effort through the implementation costs g(eb,t). Second, there is an indirect

effect through expected idiosyncratic returns revenues from performing banks H(ω̃). Third,

effort affects deposit rates which in turn determine the debt-servicing costs, F (ω̃)ω̄. Bankers

optimal choice of risk-management considers these factors to maximize future expected prof-

its. The detailed derivation of the choice of effort is provided in Appendix B.

Let vb,t represent the bankers’ value per unit of wealth. Following Gertler and Karadi

(2011) and Mendicino et al. (2020), I guess that the value function of the banker is linear in

net-worth, implying Vb,t = vb,tNb,t. The bankers’ value of equity writes:

vb,t = Et{Λh,t[(1− θ) + θvb,t+1]RE,t+1}, (28)

where RE,t+1 denotes the return on bank equity. As long as νb,t > 1, it is optimal for bankers
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to invest all their wealth in bank equity and pay no dividends.12 That is, bankers optimal

choices are divb,t = 0 and Eb,t = Nb,t.

3.5.2 Bankers’ Aggregation

Since bankers invest in a diversified portfolio of banks, they are ex-post identical. Moreover,

as the pay no dividends, the law of motion of bankers’ aggregate net-worth is given by

Nt = θRE,tNt−1 + ι (29)

where ι denotes the start-up funds of new bankers. The net transfers from bankers to

households Πt are given by:

Πt = (1− θ)RE,tNt−1 − ι. (30)

3.6 Deposit Insurance Agency

The DIA takes over the assets of defaulting banks, and fire-sales them at price λt, generating

total inflows ΠDIA
t . Moreover, the outflows from the DIA, denoted ΘDIA

t , correspond to the

deposit insurance payments from failed banks. These payments follow the same structure as

the partial equilibrium model: depositors of each bank the maximum between the deposit

insurance limit κt, and the recovery value of banks. The DIA finances operational losses

trough lump-sum taxes, given by Tt = ΘDIA
t −ΠDIA

t . Appendix B.3 provides further details.

3.7 Interest Rate on Deposits

Households’ realized return on deposits R̃d,t depends on the promised interest rate payments

Rd,t from performing banks, and payments they receive from defaulting banks. The latter

depend on both the deposit insurance payments and the early payments from queue. Absent

12After solving the model, I verify this condition indeed holds.
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deposit insurance, larger expected bank default rates require a higher promised interest

rate on deposits, since households make large losses from defaulting banks. Larger deposit

insurance coverage increases the depositors payments from defaulting banks, reducing the

sensitivity of required interest rates to default risk. Appendix B.3 provides further details.

3.8 Aggregate Risk

The model features two persistent sources of aggregate uncertainty: a bank risk shock σ̄t

and a shock to bank asset liquidity λt. For simplicity, I assume that each of these shocks

follow a Markov-chain process, represented as

Pσ̄ =

1− P σ̄
g,b P σ̄

g,b

P σ̄
b,g 1− P σ̄

b,g

 (31)

and

Pλ =

1− P λ
g,b P λ

g,b

P λ
b,g 1− P λ

b,g

 (32)

where for each each shock j ∈ {λ, σ̄}, the parameter P j
g,b is the probability of transitioning

from the ”good” to the ”bad” state, while P j
b,g represents the probability of transitioning

from the ”bad” to the ”good” state. For each shock j, the values of the variables are [jg, jb].

3.9 Equilibrium

Appendix B provides the full set of model equations as well as the equilibrium definition.

To provide further intuition about the sources of inefficiency in the model, I outline here the

goods market clearing condition, given by

Yt = Ct︸︷︷︸
consumption

+ Xt︸︷︷︸
investment

+Ψ(Kh,t+1)︸ ︷︷ ︸
holding costs

+λtF (ω̃t)Rk,tKb,t︸ ︷︷ ︸
default costs

+ g(et)Rk,tKb,t︸ ︷︷ ︸
risk-management costs

. (33)
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This equation states that total resources should be used to pay for consumption, investment,

as well as the costs from household capital holding, bank default, and bank risk-management.

Deposit insurance affects total resources available for consumption through all these channels.

In the model, fluctuations in bank asset liquidity, λt, push the economy into periods

where total bank defaults are driven be liquidity failures F (ω∗
t ) ≥ F (ω̄t) or fundamental

default F (ω∗
t ) < F (ω̄t). The interaction of liquidity-driven defaults and potentially state-

contingent deposit insurance induces non-linear dynamics. To account for this model feature,

I implement a global solution method in the spirit of Elenev et al. (2021).

4. Quantitative Analysis

This section provides details on the model calibration, and compares effects of liquidity and

fundamental banking crises on real economic activity.

4.1 Calibration

The model is calibrated at a quarterly frequency to capture key features of the US econ-

omy over the period 1970Q1-2022Q4. Standard parameters are set following the calibration

strategy in the literature. The parameters governing the aggregate risk processes are specific

to my model. Table 4 presents the model parameters, while Table 5 compares the model’s

fit to the corresponding data targets.

Standard Parameters. I set the capital share in production, α, to 0.33 and the capital

depreciation, δ , to 0.02. To match an average annual risk-free interest rate of 2%, I set

the discount factor , β, to 0.995. I assume γ = 1 corresponding to log-utility. Following

Gertler and Karadi (2011), I set θ = 0.972, which implies a bankers’ exit of probability of

2.8 %. The bank capital requirement , ϕ , is set to 8 % in accordance with Basel I and Basel

II frameworks. I set κ = 0.623, reflecting the 2008 deposit insurance level, which covered
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62.3 % of total deposits.13 I calibrate ψ and ι and following the strategy of Mendicino et al.

(2020). I set the households’ capital holding costs to ψ = 0.001 , in order to match the US

household share in domestic corporate debt markets reported by Elenev et al. (2021). The

model delivers a value of 14.29 %, slightly above the data value of 13.7 %. I set ι = 0.001 to

align the model’s average annual return on bank equity with the data. The model produces

a return of equity of 11.46 %, close to the data value of 11.14 %.

Aggregate Risk Parameters. To calibrate the parameters of the exogenous processes,

I use as targets several stylized facts about US banking crises. I classify U.S. banking crises

as either liquidity or fundamental, based on Baron et al. (2021), and combine this with

FDIC data on asset-weighted failure rates for U.S. commercial banks. This data allows me

to compute a series of moments regarding the probability, persistence, and severity of each

crisis type.

I use natural years as the model level of observation, categorizing them in ”no-crises”

years (λ = λg and σ̄ = σ̄g for all quarters), ”fundamental crises” years (λ = λg for all

quarters and σ̄ = σ̄b for at least one quarter) and ”liquidity crises” years (λ = λb for at least

one quarter). This classification is consistent with the definitions in Baron et al. (2021).14

The process for λ is calibrated as follows. First, I set the quarterly probability of tran-

sitioning to the bad liquidity state to pλg,b = 1.13% in order match the probability of tran-

sitioning to a ”liquidity crises” year conditional on being in a ”no crises” year. I get a

model moment of 4.50 % compared to a data moment of 4.55 %. Second, I set the quarterly

probability of exiting the bad liquidity state pλb,g to match the unconditional probability of

observing a ”liquidity crises” year, with the model delivering a value of 7.64 % relative to a

data value of 7.55 %. Third, I choose the bad realization of the liquidity state, λb = 40.59

13Since the largest contribution to average liquidity default in the sample stems from the 2008 crises,
choosing the 2008 level of coverage is reasonable. This value is below the long-run average of the insured
deposits share of around 0.70 %.

14Baron et al. (2021) use yearly data, and classify an observation as panic-driven, if there where narrative
descriptions of bank-runs in the newspapers. See data Appendix for further details.
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Table 4: Model Parameters

Description Parameter Value (%)
Production

Capital Share in Production α 33
Capital Depreciation Rate δ 2

Households
Discount Factor β 99.5

Capital Holding Costs ψh 0.05
Risk Aversion γ 1

Banks
Banker Exit Probability 1− θ 2.8
Banker Start-up Equity ι 0.05

Bank Capital Requirement ϕ 8
Share of Insured Deposits κ 62.3

Aggregate Risk
Fundamental Crises Entry Prob. pσ̄g,b 1.14
Fundamental Crises Exit Prob. pσ̄b,g 12.50

Exogenous Bank Risk (good times) σ̄g 5.09
Exogenous Bank Risk (bad times) σ̄b 6.74

Liquidity Crises Entry Prob. pλg,b 1.13
Liquidity Crises Exit Prob. pλb,g 25.00

Bank Asset Liquidity (good times) λg 43.00
Bank Asset Liquidty (bad times) λb 40.59

Notes: This table reports the model parameters of the baseline economy. The parameters ψ, ι,pσ̄g,b , pσ̄b,g,

σ̄g , σ̄b, p
λ
g,b, p

λ
b,g, λg, λb are calibrated internally. For an assessment of the model fit, see Figure 5. The

remainder parameters are either standard in the literature of have direct data counter-parts. See main text
for a detailed description of the calibration strategy.

%, yielding an average default rate in a ”liquidity crises” year of 4.18 %, slightly below the

4.25 % observed in the data. Finally, I set λg = 43.00 % to align with average recovery value

from defaulting assets reported by Bennett and Unal (2015). The model delivers a recovery

value of 46.89 %, which stands substantially bellow the 66.82 % in the data.15

I apply the same strategy to calibrate the bank-risk process σ̄. First, I set the quarterly

probability entering the bad fundamental risk state pσ̄g,b to 1.14 %, targeting the probability

15I compute the average recovery rate following De Groot (2021).
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Table 5: Model Fit

Description Data (%) Model (%)
Average Household Capital Share 13.7 14.29
Average Bank Equity Return 11.14 11.46

Average Recovery Value on Defaulting Banks 66.82 46.89
Probability of Transitioning to Fundamental Crises 4.55 4.32
Unconditional Fundamental Crises Probability 11.32 10.55
Average Bank Default in Fundamental Crises 1.89 1.92
Probability of Transitioning to Liquidity Crises 4.55 4.5
Unconditional Liquidity Crises Probability 7.55 7.64
Average Bank Default in Liquidity Crises 4.25 4.18

Notes: This table compares the data targets with the model moments with the parameters reported in
Table 4. The moments are computed using the simulated model over 250,000 quarters. All model and data
targets are expressed in % and in annual terms. This default data is collected from the FDIC, and the
crises classification follows Baron et al. (2021). The moment on household capital share is from Elenev et al.
(2021), the bank recovery rates are from Bennett and Unal (2015). I refer the reader to the data Appendix
for further details.

of transitioning to a fundamental crises, yielding at model value of 4.32% compared to 4.55

% in the data. Second, I set pσ̄b,g=25.50 %, producing an unconditional probability of a

fundamental crises of 7.64 %, close to the 7.55 % in the data. Third, I set σ̄b = 6.74 %,

resulting in an average default rate in a ”fundamental crises” years of 1.92 % versus a value

of 1.89 % in the data. Finally, I set σ̄g = 5 % to get no defaults occur in the good aggregate

state.

4.2 Banking Crises

This subsection conducts a series of exercises to illustrate how banking crises propagate to

the real economy through the lenses of the calibrated model. To facilitate comparison across

crises types, I simulate fundamental and liquidity crises to deliver the same impact effect on

consumption.

Fundamental Crises. The black dashed line in Figure 2 illustrates the effect of a

persistent shock to bank asset risk σ̄, following the approach of Mendicino et al. (2020). The
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deterioration on bank assets risk leads to a sharp rise in total bank default rates on impact.

However, as the second panel shows, liquidity-driven defaults are unaffected. This crises

is fundamentally-driven in the sense that all the rise in bank defaults is a result of banks

choosing to default due to poor returns.

Figure 2: Fundamental and Liquidity Banking Crises

Notes: This figure shows the impulse response function (IRF) of a fundamental shock (black solid line) and
a liquidity shock (red-dotted line) of the calibrated model. The simulation starts at ergodic mean of the
economy conditional on being in the good aggregate state. At t = 1, the baseline path assumes the good
realization of both shocks. For a liquidity crises path, I set λt = λb. For the fundamental crises path, I
set σ̄t = σ̄b for the a share of observation that delivers the same impact response in consumption than a
liquidity crises. From t = 2 onwards, I simulate the economy 10,000 times for a total of 25 periods, and
average across simulations. Variables are expressed in percent deviations from the no crises path, except
default rates which are expressed in percentage points deviations.

Following the shock, banks intensify their risk-management effort to decrease future de-

fault risk. Since portfolio adjustment is costly, banks choose to mitigate, rather than elim-

inate this risk. Bank defaults reduce the banking sector’s holdings of productive capital,

which, alongside a reduction in household capital holdings, causes a contraction in total

capital. This drop in economic activity, in turn, feeds back into bank default. In fact, even
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though the exogenous bank risk fades out sharply after the initial impact, total bank default

remains elevated for two more quarters.

The real effects of the banking crises are persistent for two main reasons. First, since

banks are at the regulatory constraint, the only way they can increase their lending capacity

is through retained earnings, which accumulate slowly. Second, households increase their

direct lending to productive firms. Since they are inefficient at doing so, the recovery in

total capital reaches a trough after 12 quarters. Together, these two forces contribute to a

highly persistent drop in consumption.

Liquidity Crises. The black solid line in Figure 2, shows the effects of a persistent

reduction in bank asset liquidity, λ, and is similar to the simulations in De Groot (2021).

The decline in bank asset liquidity induces households to withdraw their deposits early from

the banks, leading to a sharp increase liquidity defaults. This event constitutes a liquidity

crises as the rise in total bank defaults is entirely attributed to liquidity-driven defaults.

The rest of the dynamics of liquidity crises are qualitatively similar to fundamental crises:

banks increase their risk management effort to reduce default risk, and there is a persistent

drop in both total capital and consumption. Quantitatively, however, the model predicts that

the effect of liquidity-driven crises on real economic activity are substantially less persistent

than those from fundamentally driven crises. During a liquidity crises the trough in total

capital materializes around 6 quarters earlier than during fundamental crises. As will become

clear later, the low persistence of liquidity crises has important implications for deposit

insurance design.16

16The low persistence of liquidity driven crises is not surprising in light of the calibrated parameters. This
calibration reflects the fact that, as illustrated in Figure 1, the only fundamental crises in my sample is the
1990s crises, which lasted much longer than the rest of panic-driven crises.
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5. Assessing Deposit Insurance Reforms

This section assesses different options for deposit insurance reform by performing counter-

factual exercises through the lenses of the calibrated model. I consider the implications of

fixed and state-contingent deposit insurance for long-run outcomes and banking crises.

5.1 Fixed Deposit Insurance

I begin the analysis by studying the effects of changes fixed deposit insurance. In particular,

I assume that κt = κ for all periods, and study the implications of changes in κ.

5.1.1 Long-run Outcomes

I start by displaying in Figure 3 the long-run averages of economies with different values of

fixed ex-ante deposit insurance limits κ.

As illustrated by the first panel, increases in DI coverage lead to a a drop in liquidity-

driven defaults, which results from two opposing forces. On one hand, similarly to Propo-

sition 3, increases in κ lead to a reduction in the liquidity default threshold ω∗. One the

other, increases in κ lead banks to reduce their risk-management effort resulting in more

risk in bank portfolios which absent changes in ω∗, would lead to more morning defaults. It

turns out that the former effect quantitatively dominates the latter. Therefore, the result

in Proposition 3 carries through to the dynamic equilibrium framework. That is, despite

the presence of moral hazard an increase in deposit insurance coverage to 65 % completely

prevents liquidity-driven defaults.

However, as illustrated by the bottom left panel, beyond κ = 65 % further increases

in deposit insurance leads to a rise in total default rates. This result is in stark contrast

with the partial equilibrium analysis presented in Section 2.6. In partial equilibrium, the

fundamental threshold (ω̄) and the riskiness of bank assets (σ) was fixed ex-ante. In general
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Figure 3: The Long-Run Effects of Fixed Deposit Insurance

Notes: This figure shows the long-run averages of selected variables under different levels of Fixed Deposit
Insurance. The averages are taken over a simulated series of 250,000 periods. Default rates are expressed
in annual percentage points (ann. pp.), consumption is reported in percentage changes from the baseline
economy with κ = 62.3 %, and the remaining variables are reported in levels.

equilibrium, changes in κ lead to large increases in bank risk-taking which results in higher

fundamental and total default rates as κ increases further.

The size of the banking sector is increasing in the level of deposit insurance coverage, but

the strength of this relationship changes at κ = 65 %. For levels below 65 %, higher coverage

is associated with a decrease in both total defaults and costly risk-management effort. These

two forces lead to a strong increase in bank capital. Beyond that level, higher κ leads to

an increase in defaults resulting in a smaller increase in bank capital. Households choose to

hold less capital resulting in only small changes to total capital accumulation despite larger

capital holdings by banks. Since household capital holdings are costly to society, higher

deposit insurance improves the overall efficiency in capital intermediation.

The interaction of bank capital and default channels leads to an optimal level of consump-

tion at κ = 65%. Below that level, increases in coverage lead both to both a larger banking
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sector and less dead-weight losses, which result in an increase in consumption. Above that

level, consumption is decreasing in deposit insurance coverage for two reasons. First, the in-

crease in default rates is associated with larger dead-wight losses, which, all else equal, leads

to a reduction in the resources available for consumption. Second, the increase in capital

accumulation becomes weaker, which results in a smaller increase in total production.

5.1.2 Stabilization Effects

This section provides results on the implications of fixed ex-ante deposit insurance for fun-

damental and liquidity-driven banking crises.

Fundamental Crises. Figure 4 compares the effects of fundamental crises in the baseline

economy (κ = 62.3 %) with a higher level of coverage (κ = 82.3 %).17 The key message

is that higher deposit insurance leads to more severe fundamental crises. The reason is

that higher ex-ante coverage induces moral hazard and leads banks to have riskier portfolios

ex-ante. As a result, when the fundamental crises hits, bank default increases by more on

impact. After the initial hit, higher coverage induces banks to exert less risk-management

effort ex-post, which explains why bank capital drops by less despite a stronger increases in

defaults. However, the sharper increase in bank defaults reduces households’ resources to

invest. This leads to a much sharper drop in household capital investment, which in turn

results in a larger drop in total capital under higher deposit insurance. Together, the increase

in bank defaults and total capital result in a sharper drop in consumption.

Liquidity Crises. Figure 5 compares the effects of liquidity crises in the baseline econ-

omy (κ = 62.3 %) with a higher level of coverage (κ = 82.3%). The figure provides a stark

result: higher deposit insurance completely eliminates liquidity crises. By reducing the in-

centives of households to withdraw, deposit insurance can completely prevent the increase

in liquidity driven defaults. Since all the increase in total defaults is driven by liquidity

17This increase in the share of insured deposits corresponds to the increase approved in 2008, which lifted
the limit from 100,000 to 250,000 dollars.
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Figure 4: Fixed Deposit Insurance and Fundamental Crises

Notes: This figure shows the impulse response function (IRF) of a fundamental shock (σ̄t) under the baseline
FDI of 62.3 % (black solid line), and a higher FDI level of 82.3 % (red dotted line). The simulation starts
at ergodic mean of the economy conditional on being in the good aggregate state. At t = 1, the baseline
path assumes the good realization of both shocks, and for the fundamental crises path, I set σ̄t = σ̄b. From
t = 2 onwards, I simulate the economy 10,000 times for a total of 25 periods, and average across simulations.
Variables are expressed in percentage from the no crises path, except default rates which are expressed in
annual percentage points deviations.

defaults, there is no change in aggregate defaults. As a result, a liquidity shock does not

have any effects on real economic activity: total capital and consumption are unchanged.

5.2 Fast State-Contingent Deposit Insurance

This section examines the implications of state-contingent deposit insurance for long-run

outcomes and banking crises. In these model exercises, I assume that in adverse aggregate

states (i.e. σ̄ = σ̄b and λ = λb) the government can observe the shock and increase the
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Figure 5: Fixed Deposit Insurance and Liquidity Crises

Notes: This figure shows the impulse response function (IRF) of a liquidity shock (λt) under the baseline
FDI of 62.3 % (black solid line), and a higher FDI level of 82.3 % (red dotted line). The simulation starts
at ergodic mean of the economy conditional on being in the good aggregate state. At t = 1, the baseline
path assumes the good realization of both shocks, and for the liquidity crises path, I set λt = λb. From
t = 2 on, I simulate the economy 10,000 times for a total of 25 periods, and average across simulations.
Variables are expressed in percentage from the no crises path, except default rates which are expressed in
annual percentage points deviations.

coverage to a level κH ≥ 62.3%, before households withdraw. I keep the level of deposit

insurance for all the other realizations of exogenous shocks at the baseline level κ = 62.3%.

This policy mirrors the type of ex-post increases in deposit insurance that were implemented

during recent US banking crises, under the assumption of fast government response.

5.2.1 Long-Run Outcomes

Figure 6 shows the long-run averages of economies with different levels of state-contingent

deposit insurance, and compares them with the case of fixed ex-ante deposit insurance policy.
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Qualitatively, both state-contingent (dashed blue line) and fixed (dotted red line) deposit

insurance work in a similar way. Both policies are successful at reducing liquidity driven

defaults, induce lower risk-management effort and riskier bank portfolios. In both cases

total defaults are lowest at κ = 65% and bank capital accumulation is increasing in the level

of coverage.

However, there are important quantitative differences between both policies. Relative to

the fixed deposit insurance regime, the state-contingent policy induces less moral hazard, as

illustrated by a smaller increase in bank risk. This difference has two important implications.

First, the state-contingent policy initially leads to a stronger reduction in total bank defaults

than fixed deposit insurance. Second, increase in fundamentally driven defaults for levels of

deposit insurance above 65 % is much smaller under the state-contingent policy.

The effects of both policies on the size of the banking sector are quantitatively small.

This result arises from the interaction of two opposing forces. On one hand, increases in

fixed deposit insurance lead to a larger decrease in risk-management effort, reducing the

operating costs of banks. On the other, the state-contingent policy is associated with lower

bank default rates resulting in a larger banking sector. Ultimately, these two forces roughly

off-set each other, resulting in small differences in bank capital accumulation. Likewise,

both policies produce similar changes in both household capital holding and total capital

accumulation.

Since the state-contingent policy contains moral hazard relative to the fixed policy, it

leads to lower dead-weight losses to society, and consequently larger average consumption.

In fact, increasing the coverage to 65% only in adverse times, increases consumption by 10%

more than increasing coverage to 65% permanently. This result rationalizes that current US

practice of increasing deposit insurance only in crises times.
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Figure 6: The Long-Run Effects of State-Contingent Deposit Insurance

Notes: This figure shows the long-run averages of selected variables. For Fixed Deposit Insurance (red
dotted line) the level of DI coverage is kept constant over time. For State Contingent Deposit Insurance
(blue dashed line), the level of DI coverage is fixed at baseline level during good times, and is increased in
bad times. The averages are taken over a simulated series of 250,000 periods. Default rates are expressed
in annual percentage points (ann. pp.), consumption is reported in percentage changes from the baseline
economy with FDI of κ = 62.3 %, and the remaining variables are reported in levels.

5.2.2 Stabilization Effects

Next, I evaluate how state-contingent deposit insurance affects banking crises, providing

further support for the view that increasing deposit insurance only in crises times is preferable

to permanent increases.

Fundamental Crises. Figure 7 illustrates the effects fundamental crises under state-

contingent deposit insurance (κ = 62.3% and κH = 82.3 %), compared to the baseline model

(κ = 62.3%, κH = 62.3 %) and high fixed deposit insurance (κ = κH = 82.3 %). As the figure

shows, the state-contingent policy (dashed blue) leads to less severe fundamental crises than

fixed DI increases (dotted red). Specifically, the increase in fundamentally driven defaults
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Figure 7: State-Contingent Deposit Insurance and Fundamental Crises

Notes: This figure shows the impulse response function (IRF) of a fundamental shock (σ̄t). The black line
plots the case of a baseline FDI of 62.3 % while the red dotted line plots a high level of FDI of 82.3 %. The
blue dashed line shows the case where the level of coverage is fixed at 62.3 % during good times, and to of
82.3 % during bad times. The simulation starts at ergodic mean of the economy conditional on being in the
good aggregate state. At t = 1, the baseline path assumes the good realization of both shocks, and for the
fundamental crises path, I set σ̄t = σ̄b. From t = 2 onwards, I simulate the economy 10,000 times for a total
of 25 periods, and average across simulations. Variables are expressed in percentage from the no crises path,
except default rates which are expressed in annual percentage points deviations.

is substantially lower than under the high fixed deposit insurance. The ex-post increase in

coverage also leads to a smaller increase in risk-management effort.

The combination of lower default rates and a smaller increase in risk management, results

in a much smaller fall in both bank capital and total capital. As a result, total consumption

falls by less under the state-contingent policy. However, the state-contingent policy does no

fully eliminate the moral hazard costs of DI since fundamental crises are still stronger than

in the baseline economy (black line).

Liquidity Crises. Figure 8 compares the effects liquidity crises under state-contingent

deposit insurance (κ = 62.3%, κH = 82.3 %), with the baseline model (κ = 62.3%, κH = 62.3
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%). The main message from this figure is that increasing deposit insurance in during bad

times is as effective as ex-ante increases at preventing liquidity crises. By increasing the

deposit insurance limit before households make their withdrawal decisions, the government

can prevent the crises. Consequently, as long as the government implements the coverage

increase promptly, it can fully avert the liquidity crises.

Figure 8: State-Contingent Deposit Insurance and Liquidity Crises

Notes: This figure shows the impulse response function (IRF) of a liquidity shock (λt). The black line plots
the case of a baseline FDI of 62.3 %. The blue dashed line shows the case where the level of coverage is fixed
at 62.3 % during good times, and to of 82.3 % during bad times. The simulation starts at ergodic mean
of the economy conditional on being in the good aggregate state. At t = 1, the baseline path assumes the
good realization of both shocks, and for the liquidity crises path, I set λt = λb. From t = 2 on, I simulate
the economy 10,000 times for a total of 25 periods, and average across simulations. Variables are expressed
in percentage from the no crises path, except default rates which are expressed in annual percentage points
deviations.

5.3 Slow State-Contingent Deposit Insurance

The assumption that the government can react to crises before the private sector agents

make their choices is relatively strong. In reality, several frictions could prevent such a fast
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government response. First, ex-post increases in coverage often require legal changes, which

might be slow to implement. For instance, in 2008, the temporary increase in coverage

needed the approval of US Congress, and came into effect over one month after the failure of

Washington Mutual. Similarly, the ex-post increases in coverage during the 2023 crises re-

quired the approval by the FDIC, Federal Reserve, and US treasury. Second, the government

might lack the real time knowledge about the underlying shocks hitting the economy. In fact,

evidence suggests that bank-runs might becoming faster, complicating a timely government

response.18 To capture these frictions, I allow the government to implement an increase in

coverage at t (i.e. κH,t ≥ 62.3 %) only if they observed a bad aggregate shock in the previous

period (i.e. if σ̄t−1 = σ̄b and λt−1 = λb). For all other realizations of exogenous shocks at the

baseline level κ = 62.3%.

Long-run Outcomes. Figure 9 shows the long-run outcomes for economies with differ-

ent κH ≥ 62.3%, under slow implementation (green dash-dotted line), compared with fast

state-contingent deposit insurance (blue dashed line) and changes in fixed deposit insurance

(red dotted line).

The key message from this figure is that slow state-contingent deposit insurance can

mitigate liquidity driven failures, but it cannot completely prevent them. Households an-

ticipate that when transitioning from the good aggregate state to a bad liquidity state, the

government cannot increase the coverage contemporaneously. As a result, they have strong

incentives to withdraw their deposits which forces some banks to default. However, as the

liquidity crises persists, the increase in coverage comes into effect and prevents further liquid-

ity defaults moving forward. Quantitatively, this policy can only prevent about 30 % of the

liquidity driven defaults. This result differs from the fast state-contingent policy and high

fixed deposit insurance, which are enough to completely eliminate liquidity driven failures.

Interestingly, slow state-contingent deposit insurance induces a smaller increase in bank

18See FDIC (2023) for a detailed discussion on the underlying factors and Rose (2023) for a comparison
of the 2023 banking turmoil with previous bank failures.
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Figure 9: The Long-Run Effects of Slow State-Contingent Deposit Insurance

Notes: This figure shows the long-run averages of selected variables. For Fixed Deposit Insurance (red dotted
line) the level of DI coverage is kept constant over time. For state-contingent deposit insurance, the level
of DI coverage is fixed at baseline level during good times, and is increased in bad times. For Fast State
Contingent Deposit Insurance (green dotted-dashed line) the government responds contemporaneously to
financial shocks, while for Slow State Contingent Deposit Insurance (green dotted-dashed line) the govern-
ment responds with a lag. The averages are taken over a simulated series of 250,000 periods. Default rates
are expressed in annual percentage points (ann. pp.), consumption is reported in percentage changes from
the baseline economy with FDI of κ = 62.3 %, and the remaining variables are reported in levels.

risk than alternative policies. The reason is that since increases in deposit insurance do not

fully eliminate liquidity risk ex-post, banks need to reduce their risk ex-ante risk in order to

reduce their cost of debt. As a result, fundamentally driven defaults increase at a much lower

rate than under alternative policies. The smaller drop in liquidity defaults, together with a

smaller reduction in bank risk management costs imply that both bank capital declines less

under the slow implementation of state-contingent limits.

Crucially, the consumption gains from this policy are substantially smaller than under

the alternative policy reforms. In particular, the smaller reductions in liquidity failures

dominate the smaller increases in fundamentally driven defaults, resulting in stronger dead-
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weight losses. In fact, the optimal level of slow state-contingent deposit insurance achieves

gains that are about 70 % lower than the alternative reforms.

Stabilization Effects. Figure 10 and Figure 11 provide further evidence on dynamics

of banking crises under slow state-contingent deposit insurance. Figure 10 illustrates the

response to liquidity crises. It shows that when the shock hits (at t = 1), liquidity defaults

increase, but they converge back to zero thereafter (from t > 1) due to the increase in the

deposit insurance coverage by the government. This policy reduces drastically the drop in

bank capital, but the mitigation in household consumption and investment is smaller. For

completeness, Figure 11 shows that, due to the smaller increase in ex-ante risk by banks, the

effects of fundamental crises are quantitatively very similar than in the baseline economy.

Figure 10: Slow State Contingent Deposit Insurance and Liquidity Crises

Notes: This figure shows the impulse response function (IRF) of a liquidity shock (λt). The black line plots
the case of a baseline FDI of 62.3 %. The blue dashed line shows the case where the level of coverage is fixed
at 62.3 % during good times, and to of 82.3 % during bad times. The simulation starts at ergodic mean
of the economy conditional on being in the good aggregate state. At t = 1, the baseline path assumes the
good realization of both shocks, and for the liquidity crises path, I set λt = λb. From t = 2 on, I simulate
the economy 10,000 times for a total of 25 periods, and average across simulations. Variables are expressed
in percentage from the no crises path, except default rates which are expressed in annual percentage points
deviations.
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Figure 11: Slow State Contingent Deposit Insurance and Fundamental Crises

Notes: This figure shows the impulse response function (IRF) of a fundamental shock (σ̄t). The black line
plots the case of a baseline FDI of 62.3 %. The green dotted-dashed line shows the case where the level of
coverage is fixed at 62.3 % during good times, and to of 82.3 % during bad times. The simulation starts
at ergodic mean of the economy conditional on being in the good aggregate state. At t = 1, the baseline
path assumes the good realization of both shocks, and for the fundamental crises path, I set σ̄t = σ̄b. From
t = 2 onwards, I simulate the economy 10,000 times for a total of 25 periods, and average across simulations.
Variables are expressed in percentage from the no crises path, except default rates which are expressed in
annual percentage points deviations.

6. Conclusion

This paper develops a new model of deposit insurance design that is able to capture key

aspects of the current debate: failure of a small share of banks feeds back into performing

banks and real economy activity, and deposit insurance coverage can be state-contingent.

The model is calibrated to the US data and matches a series of facts regarding the probability,

persistence and severity of fundamental and liquidity-driven banking crises.

I find that, under fast government reaction, the current US practice of increasing deposit

44



insurance ex-post is optimal: it prevents liquidity crises and contains moral hazard. This

result, however, breaks under slow government reaction. That is, state-contingent deposit

insurance increases can mitigate the effects of liquidity crises, but not prevent them. There-

fore, this implementation delay has crucial implications for DI design: increasing the ex-ante

level of coverage is preferred than doing so ex-post. Contrary to the FDIC proposals, how-

ever, slow government reaction does not justify full fixed ex-ante deposit insurance. The

optimal ex-ante level of deposit insurance stands at 65 % of total deposits, which is around

10 percentage points higher than the current limit, but substantially below full insurance.

The analysis presented in this paper comes with some important caveats. First, in my

model, the level of deposit insurance coverage is expressed in share of insured deposits, but

the real-life policy is expressed in dollars. This assumption simplifies the analysis by ensuring

depositors are ex-post identical. However, as argued by Cooper and Kempf (2016) this as-

sumption neglects important distributional consequences associated with deposit insurance.

Second, evidence in Baron et al. (2021) suggests that liquidity-driven crises arise after equity

declines, whereas in my model they occur due to exogenous changes in bank asset liquidity.

Third, Cipriani et al. (2024) argue that during the 2023 banking turmoil, surviving banks

who experienced deposit withdrawals paid back depositors by borrowing from other banks,

rather than by fire-selling their assets. Addressing these limitations is left for future work.
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Online Appendix

A Partial Equilibrium

A.1 Equilibrium Definition

The aggregate profits of banks Πb are given by the average returns of performing banks minus the repayment

of depositors of performing banks, as illustrated by (1) below. Note that this equation accounts for the

fact that, as proven in Proposition 1, depositors will always roll-over non-defaulting banks. The profits to

the banks depend on the effective default threshold ω̃, but not on which share of failing banks fail in the

morning and in the afternoon.

Πb =

∫ ∞

ω̃

ωRkKbdF (ω)−
∫ ∞

ω̃

RdDbdF (ω) (1)

The ex-post aggregate return on deposits, given by (2), is the sum of the returns on performing and non-

performing debt. The first term states that households get the promised interest on performing banks.

Note again that this term internalizes that households will not withdraw early from performing banks.

The second term captures the ex-post return on debt held at failing banks, which in turn depends on the

payment made by the DIA, denoted ΘDIA, and the resources households get from early withdrawal of

banks that fail in the morning, given by
∫ ω∗

0
λωRk

1−ϕ
dF (ω) 19.

Πd =

∫ ∞

ω̃

dF (ω)RdDb︸ ︷︷ ︸
Performing

+ ΘDIA +Db

∫ ω∗

0

λωRk

1− ϕ
dF (ω)︸ ︷︷ ︸

Non-performing

(2)

The resources and payments made by the DIA crucially depend on the share of fundamental and panic

driven default. Focus first on the assets recoverd by the DIA, denoted ΠDIA and given by (3). As argued in

section 2.3, the DIA will recover no assets on banks that default in the morning. Therefore, when ω∗ ≥ ω̄,

all banks that fail do so in the morning (and through a panic) and the DIA recovers no assets. When

ω∗ < ω̄, however, a share F (ω̄) − F (ω̃) survives the morning but fails in the afternoon, so the DIA will

recover a share λ of the assets of the banks that fail in the afternoon.

ΠDIA =

{∫ ω̄

ω∗ λωR
kKbdF (ω) if ω̄ ≥ ω∗

0 if ω∗ > ω̄
(3)

The payments made by the deposit insurance agency, denoted ΘDIA and given by (4), also depend on

both the panic and fundamental thresholds. I describe each case separately. First, when ω∗ > ω̄ all banks

fail through a panic. The liabilities to the DIA are just the deposit insurance limit κ since it recovers no

19Note that for each failing bank ω < ω∗ that share of households paid before the bank runs out of resources is pm(ω)
given by equation (1), and therefore, to get aggregate value we integrate over [0, ω∗)
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assets, which must be paid to the depositors of all failing banks that did not receive early withdrawals.

Second, when ω∗ < ω̄ a share F (ω̄)− F (ω∗) of banks fails in the afternoon and a share F (ω∗) fails in the

morning. The payments of the DIA for the morning defaults are the same as when ω∗ > ω̄. In contrast, for

the afternoon defaults the DIA pays at least the limit κ. One can find a threshold ωk to be the minimum

value of ω such that the DIA pays above the limit κ 20. When ωk /∈ [ω̄, ω∗] the always pays the limit κ.

When ωk ∈ [ω̄, ω∗], the DIA pays the recovery value for any ω < ωk and the limit to for any ω > ωk.

ΘDIA =


[∫ ω∗

0
1− λωRk

1−ϕ
dF (ω)

]
κDb if ω∗ > ω̄[ ∫ ω∗

0
1− λωRk

1−ϕ
F (ω)+

∫ ω̄

ω∗ dF (ω)
]
κDb if ω∗ ≤ ω̄ and ωk /∈ [ω∗, ω̄][ ∫ ω∗

0
1− λωRk

1−ϕ
F (ω)+

∫ ω̄

ω∗ dF (ω)
]
κDb +

∫ ωκ

ω∗
λω
ω̄
dF (ω)Db if ω∗ ≤ ω̄ and ωk ∈ [ω∗, ω̄]

(4)

The DIA finances the difference between the recovered resources from defaulting banks, ΠDIA and the

payments made to depositors of such banks ΘDIA, via lump-sum taxes T , as captured by

T = ΘDIA − ΠDIA (5)

Definition 1 below contains a full description of the Partial Equilibrium of this economy. Even though

the goods market clearing condition (10) holds, it constitutes a partial equilibrium in the sense that the

deposit rate Rd does not reflect the expected pay-offs to the household are given by (2). This assumption

will be relaxed in Section 3..

Definition 1. Partial Equilibrium

Given Kb, Db, R
k, Rd, a Partial Equilibrium consists of allocations C,Πb,Πd,ΠDIA,ΘDIA,T and default

thresholds ω̄, ω∗, ω̃ such that (8),(10)-(14) hold, and ω∗ solves the equation in 1.

A.2 Proposition 1

Let ω̂h,b be the signal received by agent h about the productivity of bank b. Agent h knows that the

distribution of signals is ω̂ = ωb+ ν, where ν is a noise term distributed ν ∼ U(−ν̄, ν̄). Therefore, h knows

that signals received by other agents ω̂−h,b is bounded in the interval [ω̂h,b − ν̄, ω̂h,b + ν̄]. Assume further

that agent h receives a signal ω∗ such that she is indifferent betweenW and R. Then, the agent knows that

any agent receiving ω−h,b < ω∗ will choose W and any agent receiving ω−h,b > ω∗ will choose R. Denoting

p−h( ˆωh,b) to be the the share of agents that depositor h thinks will choose W , given signal ω̂h,b follows

p−h(ω̂h,b) =


1 if ω̂−h,b < ωh,b − ν̄
1
2
+

ω∗−ω−h,b

2ν̄
if ω̂−h,b ∈ [ωh,b − ν̄, ωh,b − ν̄]

0 if ω̂−h,b > ωh,b + ν̄

(A.2.1)

20To derive this impose pk = 1 in equation (7), substitute in for pm(ω) using equation (1), and solve for ω
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Therefore, the posterior beliefs of the agent p−h(ω̂h,b) ∼ U(0, 1). Since ωh,b = ω∗, and an agent with signal

ω∗ is indifferent between W and R. Then by taking the limit where ν̄ → 0, and expectations of the net

pay-off function of Table 1, the indifference condition writes∫ pa(ω∗)

0

(1− ϵ)RDdp+

∫ pk(ω
∗)

pa(ω∗)

[ 1

1− p
(
ω̂∗

ω̄
− pϵ

λ
)− ϵRD

]
dp+

∫ pa(ω∗)

pk(ω∗)

(κ− ϵ)RDdp+

∫ 1

pm(ω∗)

κ+ ϵ

p
RDdp = 0

(A.2.2)

After integrating and some algebra we can rewrite the indifference condition as

pm(ω
∗)Ω1 + Ω2 + Ln(pm(ω

∗))(1 + κRd) = 0 (A.2.3)

where Ω1 and Ω2 are given by

Ω1 = ϵ
Rd − 1

ϵ− λ
− κRd

1− κRd
+ κRd + Ln(

λ− ϵ

1− κRd
) (A.2.4)

Ω2 = −λ(R
d − 1)

1− λ
+

(κRd)2

1− κRd
)− Ln(1− κRd) (A.2.5)

So far we have found a threshold ω∗ such that a household h is indifferent between W and R. Let

u(j, p, ω) be the pay-off to h with beliefs p and signal ω, from strategy j ∈ {W,R}, and u(p, ω) =

u(R, p, ω)−u(W, p, ω). For ω∗ to constitute a unique equilibrium of the global game, we need the following

conditions need to hold (see Goldstein and Pauzner (2005), De Groot (2021)):

1. State Monotonicity: ∀p, pay-off u(p, ω) = u(R, p, ω)− u(W, p, ω) must be non-decreasing in ω

2. Action Single Crossing: ∀ω ∈ R, ∃ p∗ ∈ R

• u(p, ω) > 0 if p < p∗

• u(p, ω) < 0 if p > p∗

• p∗ is unique

3. Uniform Limit dominance ∃ ωL ∈ R, ωH ∈ R and µ ∈ R++ s.t. ∀p ∈ (0, 1]

• u(p, ωH) > µ

• u(p, ωL) < µ

4. Monotone Likelihood: if x̄− x > 0, h(x̄−ω)
h(x−ω)

is increasing in ω, where h(·) is distribution of noise.

5. Continuity:
∫ p

0
g(p)u(p, ω) is continious w.r.t to g(·) and signal.

6. Strict Laplacian state Monotonicity: ∃!ω̂∗ solving
∫ 1

0
u(p, ω̂∗)dp = 0.
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Conditions 1., 2., and 3. have already been discussed in the main text. Condition 4. is a technical condition

that follows from the assumption that the noise of the signal is uniformly distributed. Condition 5. refers

to continuity with respect to the weak topology. As argued by Morris and Shin (2003), this condition holds

for discontinuity in pay-offs like the one that at pm(ω) in this model. Condition 6. requires that there is a

unique solution to equation A.1.3. I have no tverified this condition, but so far all calibrations I tried gave

me a unique solution to it.

A.3 Proposition 2

We first find W̄ , which is the welfare of the economy with ω∗ = 0. Throughout, I use the upper bar

notation to denote that the flows of resources correspond to those of the economy without coordination

failure. From (11) and (12) it follows that

Π̄d + Π̄b − Θ̄DIA =

∫ ∞

ω̄

ωRkKdF (ω) (A.3.1)

From (15) it follows that

Π̄DIA − T = −Θ̄DIA (A.3.2)

Substituting into (A.2.1) results in

Π̄d + Π̄b + Π̄DIA − T =

∫ ∞

ω̄

ωRkKdF (ω) (A.3.3)

Re-arranging (A.2.3), and using the goods market clearing condition, it follows that

C̄ = Π̄d + Π̄b − T =

∫ ∞

ω̄

ωRkKdF (ω) + Π̄DIA (A.3.4)

Finally, using (13), we get that

C̄ =

∫ ∞

ω̄

ωRkKbdF (ω) +

∫ ω̄

0

ωλRkKbdF (ω) (A.3.5)

and therefore W̄ = v(C̄) where v(C) is the utility function and is assumed to be increasing C.

Applying the same steps for the economy with ω∗ > 0 one can show that

C∗ =

∫ ∞

ω̃

ωRkKbdF (ω) +

∫ ω̃

0

ωλRkKbdF (ω) (A.3.6)

Consider now the case where ω∗ ≤ ω̄. Then, it follows that

C∗ =

∫ ∞

ω̄

ωRkKbdF (ω) +

∫ ω̄

0

ωλRkKbdF (ω) (A.3.7)
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which implies that W̄ = W ∗. In contrast, when ω∗ > ω̄ it follows that

C∗ =

∫ ∞

ω∗
ωRkKbdF (ω) +

∫ ω∗

0

ωλRkKbdF (ω) (A.3.8)

using the fact ω∗ > ω̄, we can rewrite C∗ as

C∗ =

∫ ∞

ω̄

ωRkKbdF (ω)−
∫ ω∗

ω̄

ωRkKbdF (ω)+

∫ ω̄

0

ωλRkKbdF (ω)+

∫ ω∗

ω̄

ωλRkKbdF (ω) = C̄−
∫ ω̄

ω∗
(1−λ)ωRkKdF (ω)

(A.3.9)

Therefore v(C∗) < v(C̄) which implies W ∗ < W̄ .

A.4 Proposition 3

Assuming ϵ = 1/Rd, we can rewrite (A.1.3.) as

F (ω∗) = pm(ω
∗)Ω1 + Ω2 + log(pm(ω

∗))(1− κRd) = 0 (A.4.1)

where

pm(ω
∗) =

λω∗Rd

ω̄
(A.4.2)

and

ω̄ =
RdDb

RkKb

=
Rd

Rk
(1− ϕ) (A.4.3)

and

Ω1 =
Rd − 1

1− λRd︸ ︷︷ ︸
Ω11

+
(κRd)2

1− κRd︸ ︷︷ ︸
Ω12

+ log(
1− κRd

1− λRd
)︸ ︷︷ ︸

Ω13

(A.4.4)

Ω2 =
λ(1−Rd)

1− λ︸ ︷︷ ︸
Ω21

+
(κRd)2

1− κRd︸ ︷︷ ︸
Ω22

− log(1− κRd)︸ ︷︷ ︸
Ω23

(A.4.5)

Totally differentiating (A.3.1) and re-arranging we have that

∂ω∗

∂κ
= −∂F

∂κ
·
( ∂F
∂ω∗

)−1
(A.4.6)

Step 1: deriving ∂F
∂κ
< 0.

Step 2 deriving ∂F
∂ω∗ < 0.

Step 3 Put everything together

Since ∂F
∂ω∗ < 0 and ∂F

∂κ
< 0, it follows from A.4.1, that ∂ω∗

∂κ
< 0.
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A.5 Proposition 4

From Proposition 2 it follows that κ∗ must be such that ω̄ = ω∗. Substituting ω̄ into pm(ω
∗) given by (1)

it follows that

pm = λRd (A.5.1)

Substituting A.5.1 into A.4.1, and taking total derivatives, one can show that

∂κ∗

∂λ
< 0 (A.5.2)

B Dynamic General Equilibrium

B.1 Household Optimality Conditions

Let Λh,t+1 = β Uc(Ct+1)
Uc(Ct)

be the stochastic discount factor of the dynasty. The first order-conditions for

capital and deposits are (B.1.1) and (B.1.2), respectively.

1 = Et{Λh,t+1R̃d,t+1} (B.1.1)

1 + ψKh,t+1 = Et{Λh,t+1Rk,t+1} (B.1.2)

B.2 Liquidity Default Threshold

The liquidity default threshold is determined in the same way as in the static model. However, all the

elements in the equation are time-varying and determined in general equilibrium. The equation is given

by

pm,t(ω
∗
t )Ω1,t + Ω2,t + log(pm,t(ω

∗
t ))(1− κtRd,t) = 0 (B.2.1)

where

pm,t(ω
∗
t ) =

λtω
∗
tRd,t

ω̄t

Ω1,t =
Rd,t − 1

1− λtRd,t︸ ︷︷ ︸
Ω11,t

+
(κtRd,t)

2

1− κtRd,t︸ ︷︷ ︸
Ω12,t

+ log(
1− κtRd,t

1− λtRd,t

)︸ ︷︷ ︸
Ω13,t

Ω2,t =
λ(1−Rd,t)

1− λt︸ ︷︷ ︸
Ω21,t

+
(κtRd,t)

2

1− κtRd,t︸ ︷︷ ︸
Ω22,t

− log(1− κtRd,t)︸ ︷︷ ︸
Ω23,t

6



B.3 Optimal Risk-Management Effort

The future profits EtRE,t+1 given by equation (B.3.1). Bankers choose eb,t in order to maximize their ex-

pected future profits internalizing ex-ante the following aspects. First, the direct costs of risk-management

effort in their ex-post returns. Second, the expected future default outcomes of individual banks. Third,

the effect of interest rate on deposits on ex-post profits.

EtRE,t+1 = Et

{
Λb,t+1[H(ω̃)− F (ω̃)Rd,t(1− ϕ)︸ ︷︷ ︸

Πt+1

−g(eb,t)]
Rk,t+1

ϕ

}
(B.3.1)

The first effect through operating costs is the first-order derivative of the cost function with respect to

effort
∂g(eb,t)

∂eb,t
= 1 (B.3.2)

The second direct effect of defaults on future profits can be found applying the chain rule as follows

∂Πt+1

∂eb,t
=
∂Πt+1

∂σ

∂σ

∂eb,t
=
∂H(ω)

∂σ

∂σ

∂eb,t
− ∂F (ω)

∂σ

∂σ

∂eb,t
Rd,t(1− ϕ)

Note that from (23) it follows that ∂σ
∂eb,t

= 1 so we can simplify the above expression as

∂Πt+1

∂eb,t
=
∂H(ω̃)

∂σ
− ∂F (ω̃)

∂σ
Rd,t(1− ϕ) (B.3.3)

The third effect is the indirect effect of deposit rates on profits and is given by (B.3.4) where the first

term captures the reduction in profits of non-defaulting banks and the second term captures the effect of

interest rates on the default threshold.

∂Πt+1

∂Rd,t

=
∂H(ω̃t+1)

∂ω̃t+1

∂ω̃t+1

∂Rd,t

− ∂F (ω̃t+1)

∂ω̃t+1

∂ω̃t+1

∂Rd,t

(1− ϕ)Rd,t + F (ω̃t+1)(1− ϕ) (B.3.4)

Note that, depending on the state of the economy the effective default threshold ω̃t+1 is either the funda-

mental threshold ω̄t+1 or the liquidity threshold ω∗
t+1. Therefore, the effect of interest rates on the effective

default threshold ω̃t+1 is

∂ω̃t+1

∂Rd,t

=

{
∂ω∗

t+1

∂Rd,t
if ω∗

t > ω̄t

∂ω̄t+1

∂Rd,t
if ω∗

t ≤ ω̄t

(B.3.5)

From (B.1.2) and (B.5.3) it follows that the required interest rate on bank deposits depends on the banks

default rate and consequently on banks risk and risk-management choice. For simplicity, I assume that

banks approximate the deposit rate following

1 = Rd,tEt

{
Λt+1

[
F (ω̃t+1) + [1− κt+1][1− F (ω̃t+1)]

]}
(B.3.6)
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which states that the required interest rate must account for the payments made by defaulting banks and

the payments made by the DIA for defaulting banks21. Re-arranging (B.3.7) and taking partial derivatives

one can show that banks’ beliefs about the effect of their risk-management effort on the required interest

rate follow
∂Rd,t

∂eb,t
= Et

{
Λt+1

[
F (ω̃t+1) + [1− κt+1][1− F (ω̃t+1)]

]}
(B.3.7)

B.4 Deposit Insurance Agency

As argued in Section 2., the DIA recovers no assets from banks that default in the morning. Therefore,

the resources of the DIA at time t, denoted ΠDIA
t are

ΠDIA
t =

{
[H(ω̄)−H(ω∗)]λtRk,tKb,t if ω∗

t ≤ ω̄t

0 if ω∗
t > ω̄t

(B.4.1)

This equation states that whenever all banks default in the morning (ω∗
t > ω̄), the DIA recovers no re-

sources. In contrast, whenever some banks default in the afternoon (ω∗
t ≤ ω̄), it recovers a fraction λt of

the assets of the banks that survived the morning, but failed in the afternoon.

The DIA must pay at least a fraction κ of the depositors of failed banks who did not get paid by the banks.

When all defaulting banks fail in the morning (ω∗
t > ω̄t), the DIA pays Θm

t . This term captures that a

share of depositors are ”early” in the queue and get paid by the banks and the remainder of depositors are

covered by DIA22. Whenever some banks survive the the morning but fail in the afternoon (ω∗
t < ω̄t), there

are two possible outcomes: either the DIA pays the limit κ to the depositors of all banks, or it pays more

than the limit κ for some banks. The former occurs when for all banks that default in the afternoon, the

DIA recovery value per depositor is less than the limit κ. This happens when ωκ,t ≥ ω̄t
23, with payments

denoted by Θκ−
t . In contrast, if ωκ,t < ω̄t, all the banks that fail in the afternoon and satisfy ω ∈ [ωk,t, ω̄],

will have recovery values larger than the limit κ. For these banks, the DIA pays the recovery value per

21This presents a simplification in the sense that the payments from defaulting banks are given by (B.5.3), which is slightly
more involved

22This share is give by p∗(ω) and the remainder 1 − p∗(ω) will get paid by the DIA. One can show that p∗(ω) =
ωλt+1ω̄t+1R

d
t . Given ω a bank fails in the morning if λt+1R

k
t+1Kb,t+1 = pDb,t+1

23Note that ωκ
t+1 = κ

λt+1ω̄t+1
. To derive this, note that the recovery value per depositor is given RVt+1(ω)λt+1

ωRk
t+1Kb,t+1

Rd
tDb,t+1

.

Setting RVt+1(ω) = κ, and solving for ω yields ωκ
t+1
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depositor which is given by Θκ+

t . These cases are captured by ΘDIA
t and given by

ΘDIA
t =



[
F (ω∗)−H(ω∗)

λtRk,t

1− ϕ

]
κDb,t︸ ︷︷ ︸

≡ Θm
t (morning default)

if ω∗
t > ω̄t

[
F (ω̄) − F (ω∗)

]
κDb,t︸ ︷︷ ︸

≡ Θκ−
t (DI limit)

+ Θm
t if ω∗

t ≤ ω̄t & ωk,t /∈ [ω∗
t , ω̄t]

[
H(ωκ,t) − H(ω∗

t )
]λt
ω̄
Db,t︸ ︷︷ ︸

≡ Θκ+

t (over DI limit)

+ Θκ−
t + Θm

t if ω∗
t ≤ ω̄t & ωk,t ∈ [ω∗

t , ω̄t]

(B.4.2)

Finally, the DIA finances the differences between inflows and outflows via lump-sum taxes on households

Tt = ΘDIA
t − ΠDIA

t (B.4.3)

B.5 Return on deposits

Households’ realized return on deposits R̃d,t depends on the pay-off on performing debt, given by (1 −

F (ω̃))Rd,t and the pay-off on defaulting debt. The pay-off from the banks that fail in the morning denoted

Rm
d,t are defined by (B.5.1) and correspond to the DIA payments net of early withdrawals. The pay-off

from banks that default in the afternoon, denoted R̃a
d,t are given by (B.5.2) and contain only payments

made by the DIA, both for banks with recovery values above and below the limit κ.

R̃m
d,t = F (ω∗

t )κ+ [1− κ]H(ω∗
t+1)λtω̄tRd,t−1 (B.5.1)

R̃a
d,t = Rdκ[F (ωκ

t )− F (ω̄t)] +Rd,t−1[G(ω̄t+1)−G(ωκ
t+1)]λt+1ω̄t+1 (B.5.2)

The total realized return per unit of household deposits R̃d,t therefore writes

R̃d,t =

{
[1− F (ω∗

t )]Rd,t−1 + R̃m
d,t if ω∗

t > ω̄t

[1− F (ω̄t)]Rd,t−1 + R̃m
d,t + R̃a

d,t if ω∗
t ≤ ω̄t

(B.5.3)

Note that the required interest rate Rd,t must adjust in equilibrium to satisfy the realized return equation

(B.5.3) as well as the optimality condition of households with respect to deposits (B.1.2).

B.6 Market Clearing

The total stock of capital in the economy is given by

Kt = Kb,t +Kh,t (B.6.1)
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Market clearing condition for deposits is

Dh,t = Db,t (B.6.2)

and for labour is

Lt = 1 (B.6.3)

B.7 Equilibrium Definition

I now define the equilibrium. Given initial conditions [Kb,0, Kh,0, e0, Rd,0, λ0, σ0] a sequential competitive

equilibrium consists of sequences of

• Prices {rk,t, wt, Rd,t}∞t=0

• Returns{Rk,t, R̃d,t, RE,t}∞t=0

• Production inputs {Kt, Lt}∞t=0

• Households’ plans {Dh,t+1, Kh,t+1, Ct}∞t=0

• Banks’ choices {Kb,t+1, Db,t+1}∞t=0 and default thresholds {ω̃t, ω̄t, ω
∗
t , }∞t=0

• Bankers’ choices {divb,t, Eb,t, eb,t}∞t=0, value of equity {vb,t}∞t=0, net-worth {Nb,t}∞t=0, and profits {Πt}∞t=0

• DIA actions: {κt,ΘDIA
t ,ΠDIA

t , Tt}∞t=0

• Realizations of the exogenous shocks {λt, σ̄t}∞t=0 and bank risk {σt}∞t=0

such that, for all t, the following conditions hold:

• Producers optimality conditions (12) and (13)

• Household optimality conditions (B.1.1)-(B.1.2), and (14)

• Banks’ optimality conditions (17)-(18)

• Banks’ liquidity default threshold (B.2.1), fundamental threshold

ω̄t =
Rd,t

Rk,t

(1− ϕ)

and effective default threshold ω̃t

ω̃t = Max{ω̄t, ω
∗
t }

• Individual bankers’ optimality conditions for effort (B.3.7) and

divb,t = 0

Eb,t = Nb,t

• Aggregate bankers’ value of equity (28), law of motion of net-worth (29), and profits (30)
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• DIA flows equations (B.4.1)-(B.4.3) and policy

κt = f(λt, σ̄t)

• Returns on deposits (B.5.3), capital

Rk,t = rk,t + (1− δ)

and equity

RE,t = [H(ω̃t)− F (ω̃t)ω̄t − e2b,t]ϕRk,t+1

• Market clearing conditions (B.6.1)-(B.6.3)

• Exogenous shocks processes (31) - (32)

• Realized bank risk (22).

C Data Appendix

The target moments for the model calibration are computed as follows.

Return on Equity. I collect data on bank equity returns from FRED. In particular, I download

equity return series for all US banks for the period 1984-2020. The average return over the sample period

is 11.14%.

Deposit Insurance. I use FDIC data on the average share of uninsured domestic deposits of US

commercial banks from 1970 to 2022. Specifically, I download the underlying data for the report on

deposit insurance reform FDIC (2023). The 2008 value stands at 36.7%, corresponding to a level of

deposit insurance that covers 67.3% of total deposits. The long-run average stands at 69.91 %.

Bank Default. I construct a series of asset-weighted bank default using FDIC data as follows. First,

I collect data on the asset value of each individual commercial bank that failed over the period 1970-2022.

Second, I obtain yearly data on the total value of US commercial banks from 1970 to 2022. Third, I

compute asset-weighted bank default rate by dividing the total asset value of all failed banks during each

year, over the value of all the commercial banks.

Crises Classification. The methodology developed by Baron et al. (2021) classifies the following years

as banking crises: 1974, 1984, 1990, and 2008. They classify the 1974 to be a silent crises (equity declines

without bank defaults), the 1984 and 2008 as default crises with panics, and the 1990 crises as a default

crises without panics. However, the FDIC default data does not align very closely with this classification.
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In particular, the bank default series shows that often times, the bank default rates start increasing prior

the crises year identified by Baron et al. (2021).

To overcome this challenge, I classify as a crises year all observations with bank default rates above the

long-run average. This delivers the following observations as crises years: 1982, 1984, 1988, 1989, 1990,

1991, 1992, 2008, 2009, 2010. I then allocate this years to fundamental crises based on the classification of

Baron et al. (2021). The fundamental crises years are then 1982, 1988 , 1989, 1990, 1991 and 1992. The

liquidity default years are 1984, 2008, 2009, and 2010.

Crises Moments. On the basis of the crises classification and the default rates data, I compute

a series of moments. For fundamental crises, I get an average default rate of 1.89 %, an unconditional

probability of 11.32 %, and a probability of transitioning to a fundamental crises years of 4.55 %. For

liquidity crises, I get an average default rate of 4.52 %, an unconditional probability of 7.52 %, and a

probability of transitioning to a liquidity crises years of 4.55 %.
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